Γραφένιο: το υλικό του μέλλοντος

Ικανό να αυξήσει την ταχύτητα του Ίντερνετ 100 φορές και να κατασκευαστούν, χάρη στις ιδιότητές του, ευπροσάρμοστα και σχεδόν αόρατα ρούχα, το γραφένιο ήδη ονομάζεται από πολλούς στην επιστημονική κοινότητα ως το ‘μαγικό υλικό’ που θα φέρει επανάσταση σε αρκετούς τομείς της τεχνολογίας και όχι μόνο. Ένα εκατομμύριο φύλλα γραφένιου έχουν πάχος μόλις ένα χιλιοστό και αρκετοί πιστεύουν πως το συγκεκριμένο υλικό μπορεί να φέρει μία νέα  βιομηχανική επανάσταση. Eίναι το πιο λεπτό, το πιο δυνατό και το πιο σκληρό υλικό που έχει ποτέ φτιαχτεί. Ταυτόχρονα είναι διάφανο, εύκαμπτο και συμπεριφέρεται πολύ καλά σε συνθήκες υψηλής θερμότητας και ηλεκτρισμού.

Γιατί λοιπόν επικρατεί τέτοιος ενθουσιασμός για το γραφένιο; Γιατί κάνει όλα αυτά που καθιστούν την τεχνολογία τόσο εντυπωσιακή και τα κάνει ακόμα καλύτερα. Θέλουμε οι μπαταρίες λιθίου να αντέχουν 10 φορές περισσότερο με λίγα λεπτά φόρτισης; Οι οθόνες touchscreen να μπορούν να λυγίζουν; Να εκτυπώνουμε φωτοβολταϊκά ή να φτιάχνουμε κάτι πιο σκληρό από διαμάντι; Να φτιάχνουμε λεπτές και ελαφριές κατασκευές οι οποίες είναι διακόσιες φορές πιο δυνατές σε σύγκριση με αυτές που φτιάχνονται από ατσάλι; Όλα αυτά, μπορούν να γίνουν δυνατά χάρη στο γραφένιο. Επιπλέον, μπορεί να χρησιμοποιηθεί στην κατασκευή πόρτας που ανιχνεύει χαρακτηριστικά προσώπου, σε νανο-αισθητήρες για την ανίχνευση καρκίνου του μαστού και σε μπαταρίες smartphones που φορτίζουν σε λίγα μόλις λεπτά.

Ένας απλός μη τεχνικός προσδιορισμός έχει δοθεί στο γραφένιο:

Το γραφένιο είναι επίπεδα από μονοστρωματικά άτομα άνθρακα καλά συσκευασμένα σε ένα δισδιάστατο (2D) πλέγμα κυψελών, και αποτελεί βασικό στοιχείο για την οικοδόμηση γραφιτικών υλικών όλων των διαστάσεων. Μπορεί να είναι κλεισμένο σε 0D φουλερένια, τυλιγμένο σε 1D νανοσωλήνες ή στοιβάζονται σε 3D γραφίτη.

Ένα σημαντικό βήμα προόδου στην επιστήμη του γραφενίου ήρθε όταν ο Sir Andre Geim και ο Sir Kostya Novoselov στο Πανεπστήμιο του Μάντσεστερ κατάφεραν να εξάγουν μονοατομικού πάχους κρυσταλλίτες (γραφένιο) από ακατέργαστο γραφίτη το 2004. Η ιδέα τους να αποκολλήσουν από τον γραφίτη ένα στρώμα γραφενίου με τη χρήση του σελοτέιπ(!) τους χάρισε το νόμπελ Φυσικής το 2010. Από τότε, εκατοντάδες ερευνητές έχουν εισέλθει στην περιοχή και, φυσικά, πραγματοποίησαν εκτενή έρευνα για τις προηγούμενες σχετικές δημοσιεύσεις. Η πρώτη βιβλιογραφία δόθηκε από τους πρωτοπόρους από το Μάντσεστερ. Επικαλούνται διάφορα έγγραφα στα οποία στο γραφένιο ή σε πολύ λεπτές γραφιτικές στρώσεις εμφανίζεται κρυσταλλική αύξηση σε διάφορα υποστρώματα.

 

Το γραφένιο που παράγεται είναι ένα από τα πιο ακριβά υλικά στη Γη, με ένα δείγμα που μπορεί να τοποθετηθεί στη διατομή μιας ανθρώπινης τρίχας να κόστιζε περισσότερο από 1.000 δολάρια τον Απρίλιο του 2008 (περίπου 100.000.000 δολάρια / cm2). Από την άλλη πλευρά, η τιμή του κρυσταλλικά αυξανόμενου γραφενίου πάνω σε καρβίδιο του πυριτίου έχει τιμή η οποία ήταν περίπου $ 100/cm2 το 2009. Ακόμη φθηνότερο γραφένιο έχει παραχθεί από μεταφορά από νικέλιο, από Κορεάτες ερευνητές, με μεγέθη πλακιδίων έως 30″.

Μηχανικές ιδιότητες

Το 2008 πραγματοποιείται το πρώτο πείραμα που αποδεικνύει ότι το γραφένιο είναι το ισχυρότερο υλικό που υπάρχει στη φύση. Οι μετρήσεις έδειξαν ότι το γραφένιο έχει αντοχή εφελκυσμού 100 φορές μεγαλύτερη από το ατσάλι. Ωστόσο, η διαδικασία παραγωγής του μέσω ης μηχανικής αποφλοίωσης του φυσικού γραφίτη, θα απαιτήσει περαιτέρω τεχνολογική ανάπτυξη πριν να γίνει εμπορικά διαθέσιμο. Στην Ελλάδα τα τελευταία 4 χρόνια υπάρχει σημαντική ερευνητική δραστηριότητα στο γραφένιο (παραγωγή, χαρακτηρισμός και εφαρμογές), που πραγματοποιείται στο Κέντρο Γραφενίου του Ινστιτούτου Επιστημών Χημικής Μηχανικής του Ιδρύματος Τεχνολογίας και Έρευνας (ΙΤΕ/ΙΕΧΜΗ). Η πρώτη ερευνητική εργασία που μελετά την συμπεριφορά του γραφενίου υπό θλιπτική μηχανική φόρτιση, πραγματοποιήθηκε το 2009 στο Κέντρο Γραφενίου σε συνεργασία με τους κατόχους του βραβείου Nobel Φυσικής για το 2010

Πολυμερή σύνθετα με ενίσχυση γραφενίου

Απλώνοντας ένα μικρό ποσό γραφενίου σε κάποιο πολυμερές, οι ερευνητές έφτιαξαν σκληρά και ελαφρά υλικά. Η ηλεκτρική συμπεριφορά στα σύνθετα μπορεί να αντέξει πολύ υψηλότερες θερμοκρασίες από ό, τι τα πολυμερή μόνα τους.

Τα πολυμερή μπορούν να εγχυθούν με νανοσωλήνες άνθρακα για να φτιάξουν υλικά με παρεμφερείς ιδιότητες. Τα πολυμερή σύνθετα με ενίσχυση γραφενίου είναι ιδανικά για ελαφριές δεξαμενές βενζίνης και πλαστικά δοχεία που διατηρούν τη φρεσκάδα των τροφίμων για εβδομάδες. Θα μπορούσαν επίσης να χρησιμοποιηθούν για να φτιάξουν ελαφρύτερα και με μικρότερη κατανάλωση καυσίμων αεροσκάφη και εξαρτήματα αυτοκινήτων, καθώς και ισχυρότερες ανεμογεννήτριες, ιατρικά εμφυτεύματα, και αθλητικό εξοπλισμό. Επιπλέον, είναι καλοί αγωγοί του ηλεκτρισμού και θα μπορούσαν να χρησιμοποιηθούν για να φτιαχτούν διαφανείς αγώγιμες επιστρώσεις για ηλιακές κυψελίδες και οθόνες.

Η ανάπτυξη αποτελεί μέρος μιας ευρύτερης προσπάθειας έρευνας για να δημιουργήσουν πολυμερή ενισχυμένα με νανοσωματίδια. Ίνες άνθρακα και ίνες γυαλιού χρησιμοποιούνται παραδοσιακά για την ενίσχυση πολυμερών. Σε αντίθεση με τις ίνες, όμως, ένα πολύ μικρό ποσό των νανοσωματιδίων (λιγότερο από το 2 τοις εκατό του όγκου του σύνθετου) είναι αρκετό για να κάνει το πολυμερές ισχυρότερο και ανθεκτικότερο στη θερμότητα.

Το γραφένιο στην κατασκευή εύκαμπτων οθονών και κυκλωμάτων

Τo γραφένιο είναι εύκαμπτο και εξαιρετικά καλός αγωγός του ηλεκτρισμού. Επίσης, είναι ένα υλικό πιο σκληρό κι από το διαμάντι. Θα μπορούσε λοιπόν να βρει χρήση σε εύκαμπτες οθόνες του υπολογιστή, σε μοριακά ηλεκτρονικά και σε νέες ασύρματες επικοινωνίες.

Η κατασκευή φύλλων γραφενίου υψηλής ποιότητας είναι συνήθως μια αργή, επίπονη διαδικασία, όμως τελευταία αρκετές ερευνητικές ομάδες έχουν ανακαλύψει τρόπους για να φτιαχτούν κυκλώματα γραφενίου, χρησιμοποιώντας τεχνικές δανεισμένες από την κατασκευή μικροτσίπ για μαζική παραγωγή.

Τα στρώματα του γραφενίου – άτομα άνθρακα διατεταγμένα σε ένα σχήμα κυψελοειδούς δομής από εξάγωνα πάχους ενός μόλις ατόμου – μπορούμε να τα πάρουμε εύκολα από τη μύτη ενός μολυβιού αν χρησιμοποιήσουμε μια κολλητική ταινία. Αντίθετα, η νέα τεχνική αναγκάζει τα άτομα του άνθρακα, μέσα σε ατμούς υδρογονανθράκων, να κολλήσουν πάνω σε μια επιφάνεια νικελίου και έτσι να σχηματίσουν εξάγωνα, τη γνωστή μορφή του γραφενίου.

Εν συνεχεία χρησιμοποιώντας τεχνικές που συναντάμε στην κατασκευή των τσιπ χαράσσονται ολοκληρωμένα κυκλώματα πάνω στην επιφάνεια νικελίου. Καθώς σχηματίζονται στρώματα γραφενίου, αυτά παίρνουν το σχήμα του κυκλώματος που θέλουμε, αναφέρουν ερευνητές στο περιοδικό Nature.

«Η ανακάλυψη ενός κατάλληλου υλικού που να είναι διαφανές, αγώγιμο και λεπτό είναι ο μεγάλος στόχος«, λέει ο Philip Kim, ένας από τους ερευνητές και φυσικός της συμπυκνωμένης ύλης στο Πανεπιστήμιο Κολούμπια. Ο Kim και οι συνάδελφοί του έδειξαν ότι το γραφένιο που σχηματίζεται από την απόθεση χημικού ατμού, διατηρεί εξαιρετικές ηλεκτρικές ιδιότητες ακόμη και όταν λυγίζεται.

Τα τελικά φύλλα γραφενίου -πάνω σε πολυμερές πλαστικό – έχουν τόσο μικρό πάχος ώστε να παραμένουν διαφανή και να μπορούν να κάμπτονται ή να τεντώνονται, ανάλογα με το πολυμερές που χρησιμοποιήθηκε στην κατασκευή τους.

Η νέα τεχνική θα μπορούσε να αξιοποιηθεί αρχικά για την ανάπτυξη ελαστικών οθονών, στις οποίες το γραφένιο θα υποκαθιστά το ακριβό και άκαμπτο οξείδιο τιτανίου-ίνδιου. Αργότερα, όταν θα υπάρχουν τεχνικές για την παραγωγή ποιοτικών φύλλων γραφενίου σε μεγάλες διαστάσεις, ο άνθρακας θα αρχίσει να αντικαθιστά το πυρίτιο σε όλες τις εφαρμογές της ηλεκτρονικής, προβλέπει ο ερευνητής.

Ύφανση

Δημιουργήθηκε ένα νέο υλικό, το οξείδιο του γραφενίου, που μπορεί να διπλωθεί, να ζαρωθεί και—μέχρι ενός σημείου—να τεντωθεί. Αλλά παρόλο ότι έχει το ίδιο πάχος με το συνηθισμένο χαρτί (μόλις ένα χιλιοστό του χιλιοστού) είναι πολύ δύσκαμπτο και εξαιρετικά ανθεκτικό, ισχυρίζονται οι εφευρέτες του. Επιπλέον, θεωρούν ότι το υλικό που βασίζεται σε μια ένωση του άνθρακα μπορεί να προσαρμοστεί για πολλές εφαρμογές, συμπεριλαμβανομένης και της μοριακής αποθήκευσης, σαν ιοντικού αγωγού και σαν υπερπυκνωτή.

Μια ομάδα από το Βορειοδυτικό Πανεπιστήμιο στο Σικάγο συμπεριλαμβανομένου και του Rodney Ruoff έχει ανακαλύψει ότι μεγάλες ποσότητες οξειδωμένου γραφενίου μπορούν να ‘υφανθούν’ μαζί, δημιουργούν έναν νέο τύπο «χαρτιού» που είναι πιο δύσκαμπτο και ισχυρότερο από άλλα λεπτά υλικά. Συγκεκριμένα δημιούργησαν το νέο υλικό από επικαλυπτόμενα φύλλα οξειδίου του γραφενίου, ενωμένα όπως τα κεραμίδια μιας στέγης χάρη σε δεσμούς υδρογόνου. Επίσης, διπλώνεται σχετικά εύκολα αλλά σκίζεται πολύ δύσκολα.

Το γραφένιο στην αποθήκευση υδρογόνου

Μια ομάδα Ελλήνων ερευνητών σχεδίασε ένα νέο υλικό από φύλλα γραφένιου, με στόχο την αποθήκευση υδρογόνου, ανακάλυψη που μπορεί να επιταχύνει την ανάπτυξη οχημάτων, τα οποία χρησιμοποιούν το υδρογόνο ως εναλλακτική πηγή ενέργειας. Το νέο υλικό σχεδόν πληρεί τις προδιαγραφές του υπουργείου Ενέργειας των ΗΠΑ, σχετικά με την αποθήκευση του υδρογόνου, που είναι εκρηκτικό αέριο.

Οι Κρητικοί ερευνητές Γιώργος Δημητρακάκης, Εμμανουήλ Τυλλιανάκης και Γιώργος Φρουδάκης, σε εργασία τους που έχει δημοσιευτεί στο περιοδικό «Nano Letters» της Αμερικανικής Χημικής Εταιρίας, αναφέρουν ότι οι επιστήμονες, εδώ και καιρό, αναζητούν τρόπους για να χρησιμοποιήσουν νανοσωλήνες άνθρακα με στόχο την αποθήκευση υδρογόνου στις κυψέλες καυσίμων των αυτοκινήτων. Οι νανοσωλήνες είναι μικροσκοπικοί κύλινδροι άνθρακα, περίπου 50.000 φορές λεπτότεροι από το πλάτος μιας ανθρώπινης τρίχας. Στόχος των ερευνών είναι η χρήση αυτών των νανοσωλήνων, ως αποθηκευτικών χώρων στην επόμενη γενιά κυψελών καυσίμων.

Οι Έλληνες ερευνητές χρησιμοποίησαν ηλεκτρονικούς υπολογιστές για να σχεδιάσουν μια μοναδική δομή αποθήκευσης υδρογόνου, που αποτελείται από παράλληλα φύλλα γραφένιου (στρώματα άνθρακα με πάχος μόλις ενός ατόμου), τα οποία στη συνέχεια σταθεροποιούνται από κάθετες στήλες νανοσωλήνων άνθρακα. Επίσης, πρόσθεσαν ιόντα λιθίου στο σχεδιασμό του νέου υλικού για να βελτιώσουν την αποθηκευτική του δυνατότητα.

Σύμφωνα με τις εκτιμήσεις των τριών επιστημόνων, το νέο υλικό (pillared graphene) μπορεί θεωρητικά να αποθηκεύσει μέχρι 41 γραμμάρια υδρογόνου ανά λίτρο, σχεδόν καλύπτοντας τις αντίστοιχες προδιαγραφές του αμερικανικού υπουργείου Ενέργειας (45 γρ. ανά λίτρο) για εφαρμογές στις μεταφορές.

Το επόμενο βήμα, κατά τους ερευνητές, θα είναι η κατασκευή του νέου υλικού και η δοκιμασία του στην πράξη.

Written by
Founder του pcbyte.gr με νέα, reviews και guides από από τον μαγικό κόσμο της πληροφορικής και της τεχνολογίας

Αφήστε ένα μήνυμα

Το email σας δεν θα δημοσιευτεί. Τα πεδία με * είναι απαραίτητα.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

Lost Password

Please enter your username or email address. You will receive a link to create a new password via email.